Ferrate(VI) enhanced photocatalytic oxidation of pollutants in aqueous TiO2 suspensions.
نویسندگان
چکیده
BACKGROUND, AIM AND SCOPE Photocatalytic oxidation using UV irradiation of TiO(2) has been studied extensively and has many potential industrial applications, including the degradation of recalcitrant contaminants in water and wastewater treatment. A limiting factor in the oxidation process is the recombination of conduction band electrons (e(-)(cb)) with electron holes (h(vb)(+)) on the irradiated TiO(2) surface; thus, in aqueous conditions, the presence of an effective electron scavenger will be beneficial to the efficiency of the oxidation process. Ferrate (FeO(4)(2-)) has received much recent attention as a water treatment chemical since it behaves simultaneously as an oxidant and coagulant. The combination of ferrate [Fe(VI)] with UV/TiO(2) photocatalysis offers an oxidation synergism arising from the Fe(VI) scavenging of e(-)(cb) and the corresponding beneficial formation of Fe(V) from the Fe(VI) reduction. This paper reviews recent studies concerning the photocatalytic oxidation of problematic pollutants with and without ferrate. MATERIALS AND METHODS The paper reviews the published results of laboratory experiments designed to follow the photocatalytic degradation of selected contaminants of environmental significance and the influence of the experimental conditions (e.g. pH, reactant concentrations and dissolved oxygen). The specific compounds are as follows: ammonia, cyanate, formic acid, bisphenol-A, dibutyl- and dimethyl-phthalate and microcystin-LR. The principal focus in these studies has been on the rates of reaction rather than on reaction pathways and products. RESULTS The presence of UV/TiO(2) accelerates the chemical reduction of ferrate, and the reduction rate decreases with pH owing to deprotonation of ferrate ion. For all the selected contaminant substances, the photocatalytic oxidation rate was greater in the presence of ferrate, and this was believed to be synergistic rather than additive. The presence of dissolved oxygen in solution reduced the degradation rate of dimethyl phthalate in the ferrate/photocatalysis system. In the study of microcystin-LR, it was evident that an optimal ferrate concentration exists, whereby higher Fe(VI) concentrations above the optimum leads to a reduction in microcystin-LR degradation. In addition, the rate of microcystin-LR degradation was found to be strongly dependent on pH and was greatest at pH 6. DISCUSSION The initial rate of photocatalytic reduction under different conditions was analysed using a Langmuirian form. Decrease in rates in the presence of dissolved oxygen may be due to competition between oxygen and ferrate as electron scavengers and to non-productive radical species interactions. The reaction between ferrate(VI) and microcystins-LR in the pH range of 6.0-10.0 is most likely controlled by the protonated Fe(VI) species, HFeO(4)(-). CONCLUSIONS The photocatalytic oxidation of selected, recalcitrant contaminants was found to be significantly greater in the presence of ferrate, arising from the role of ferrate in inhibiting the h(vb)(+)-e(-)(cb) pair recombination on TiO(2) surfaces and the corresponding generation of highly oxidative Fe(V) species. The performance of the ferrate/photocatalysis system is strongly influenced by the reaction conditions, particularly the pH and dissolved oxygen concentration, arising from the complex nature of the interactions between the catalyst and the solution. Overall, the treatment performance of the Fe(VI)-TiO(2)-UV system is generally superior to alternative chemical oxidation methods. RECOMMENDATIONS AND PERSPECTIVES The formation of intermediate Fe(V) species in the photocatalytic reduction of ferrate(VI) requires confirmation, and a method involving electron paramagnetic resonance spectroscopy could be applied for this. The reactivity of Fe(V) with the selected contaminants is required in order to better understand the role of ferrate in the Fe(VI)-TiO(2)-UV oxidation system. To increase the practical utility of the system, it is recommended that future studies involving the photocatalytic oxidation of pollutants in the presence of ferrate(VI) should focus on developing modified TiO(2) surfaces that are photocatalytic under visible light conditions.
منابع مشابه
Degradation of endocrine disrupting chemicals in aqueous solution by interaction of photocatalytic oxidation and ferrate (VI) oxidation.
In this study, the degradation of bisphenol A in aqueous suspension by interaction of photocatalytic oxidation and ferrate(VI) oxidation was investigated under different conditions. The results indicate that the formation of Fe(V) and Fe(IV) is in the photocatalytic reduction of Fe(VI) by electron (ecb-) on the surface of TiO2. The oxidation efficiency of the photocatalytic oxidation in the pre...
متن کاملOxidation of Sulfonamides in Aqueous Solution by UV-TiO2-Fe(VI)
The photocatalytic degradation of sulfonamides in aqueous TiO2 suspension under UV irradiation has been investigated using potassium ferrate as electron acceptors. The results showed that the stability of Fe(VI) is dependent on pH significantly, and the stability reduces obviously in the presence of UV-TiO2. The experiments indicated that Fe(VI) could effectively scavenge the conduction band el...
متن کاملSelective oxidation of alcohols in aqueous suspensions of rhodium ion-modified TiO2 photocatalysts under irradiation of visible light.
Photocatalytic oxidation of benzyl alcohols in aqueous suspensions of rhodium ion-modified titanium(iv) oxide (Rh(3+)/TiO2) in the presence of O2 under irradiation of visible light was examined. In the photocatalytic oxidation of benzyl alcohol, benzaldehyde was obtained in a high yield (97%) with >99% conversion of benzyl alcohol. Rh(3+)/TiO2 photocatalysts having various physical properties w...
متن کاملReaction pathways of dimethyl phthalate degradation in TiO2-UV-O2 and TiO2-UV-Fe(VI) systems.
The photocatalytic degradation of dimethyl phthalate (DMP) in aqueous TiO2 suspension under UV illumination has been investigated using oxygen (O2) and ferrate (Fe(VI)) as electron acceptors. The experiments demonstrated that Fe(VI) was a more effective electron acceptor than O2 for scavenging the conduction band electrons from the surface of the catalyst. Some major intermediate products from ...
متن کاملSynthesis, structural characterization and catalytic activity of TiO2/Al2O3 photo-composite
In recent years, the effects of heterogeneous catalysts for the oxidation of organic and inorganic pollutants in industrial wastewaters are spread. Traditionally, these reactions are usually carried out using suspensions of photo-catalysts such as TiO2. A chemical method including TiCl4, Al(NO3)3, ethanol amine, ethyl acetoacetate and aqueous ammonia were used for the fabrication of TiO2-Al2O3 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science and pollution research international
دوره 17 2 شماره
صفحات -
تاریخ انتشار 2010